Menu

Program Overview

masters sim data sci logo 2


"As a student in the MSc Simulation and Data Science program (former program title), I had the opportunity to take lot of interesting courses, which gave me a significant advantage in my career. It's not only about the new tools I've mastered, but my thought process that was completely transformed."

Elena Papadiofantous
MSc Simulation and Data Science program (former program title) Alumna

 

High Performance Computing and Machine Learning (former Simulation and Data Science MSc program) is a unique course in Cyprus that combines computational modelling, large-scale simulations, and Artificial Intelligence (AI) technologies, as well as their applications across disciplines.  Digitalisation and advanced instruments and sensors are producing unprecedented large amounts of data that need large-scale computing to analyse them.  At the same time, the availability of exascale computers is creating new opportunities for studying complex systems using large-scale simulations.

All disciplines, such as environmental, biological, chemical, physical sciences, finance and economics, engineering and the humanities need to use computational and data science-based approaches to address the current and future data challenges.  Simulation and machine learning are also widely used methodologies for SMEs and industry at large. The programme also aims to introduce students to novel computer architectures, such as quantum computers, that can be developed as the computing systems of the future.


CASTORC Master 2019 11 21 145823

The Master of Science / Master of Philosophy (MSc/MPhil) in “High Performance Computing and Machine Learning” is a programme that provides a unique interdisciplinary approach to solving critically important problems, using computational modelling, applied mathematics, simulation approaches and machine learning and computing methodologies with applications in a very broad of fields such as the physical sciences, engineering, and biology. Through modelling, simulation, machine learning, and the study of specific phenomena via computer analysis, students will learn to apply computation and data science to gain new insights.

The objective of the program is to prepare students for a career as computational and data scientists in academia as well as in the private and public sectors. Students may also pursue doctoral studies in a variety of computational and data science related fields.

Combining theoretical with practically focused training using state-of-the-art supercomputers, the Master of Science / Master of Philosophy in High Performance Computing and Machine Learning program aims to provide a well-rounded education for students who wish to advance careers in the digital age.

 

Degree Awarded

The program offers two degree options: an MSc and an MSc/MPhil. The MSc caters to students interested in pursuing a more professional focus, while the MSc/MPhil is intended for students that want to pursue a research career thus offering a more enhanced research component.

The program is accredited by The Cyprus Agency of Quality Assurance and Accreditation in Higher Education. The language of instruction and communication of The Cyprus Institute is English.

 

MSc in High Performance Computing and Machine Learning

The MSc is a one-year program. During the first two semesters (Fall and Spring), students earn 50 ECTS through courses and 10 ECTS through one mandatory internship.

First (Fall) Semester: Students attend four mandatory courses (30 ECTS), which provide them with the necessary computer programming and software engineering background to solve complex problems by numerical methods and high performance computing (HPC). At the same time, the mandatory courses introduce students to data science, big data analysis and statistics, as well as to both theoretical and practical concepts in machine learning, data mining and pattern recognition.

Second (Spring) Semester: Students attend elective courses (20 ECTS) and implement one mandatory internship (10 ECTS) of a duration of up to 3 weeks, either internally in one of the institute’s labs or externally in the industry (private/public sector), giving them the opportunity to design their study program in consultation with their mentor.

Summer term: Students earn an additional 15 ECTS while working on their Master’s research project.

Final four-week Fall term: Students complete their program while working on their Master’s research project, which is submitted in the form of a written Master’s thesis and is defended earning 15 ECTS.

MSc/MPhil in High Performance Computing and Machine Learning

The MPhil is a one-and-a-half-year program. During the first two semesters (Fall and Spring), students earn 50 ECTS through courses and 10 ECTS through one mandatory internship (which continues in the summer term).

First (Fall) Semester: Students attend four mandatory courses (30 ECTS), which provide them with the necessary computer programming and software engineering background to solve complex problems by numerical methods and high performance computing (HPC). At the same time, the mandatory courses introduce students to data science, big data analysis and statistics, as well as to both theoretical and practical concepts in machine learning, data mining and pattern recognition.

Second (Spring) Semester: Students attend elective courses (20 ECTS) and implement one mandatory internship (10 ECTS), of a duration of up to 3 months (continuing in the summer term), either internally in one of the institute’s labs or externally in the industry (private/public sector), giving them the opportunity to design their study program in consultation with their mentor.

Summer term: Students earn an additional 15 ECTS while working on their mandatory internship

Third (Fall) Semester: Students earn an additional 5 ECTS from the completion of the internship and 25 ECTS while working on their Master’s research project.

Final eight-week Spring term: Students complete their program while working on their Master’s research project, which is submitted in the form of a written Master’s dissertation and is defended earning 15 ECTS. 

Back to top

 

Career Prospects

The objective of the program is to prepare students for a career as computational and data scientists in academia, and in the private and public sectors. Students may also pursue doctoral studies in a variety of computational and data science related fields. Combining theoretical with practically focused training using state-of-the-art supercomputers, the Master of Science / Master of Philosophy in High Performance Computing and Machine Learning program aims to provide a well-rounded education for students who wish to advance careers in the digital age.

Back to top

 

Program Structure and Requirements


  MSc Degree MSc / MPhil Degree

Term 1 (Fall Semester)

ECTS

ECTS

Compulsory Courses

30

30

Term 2 (Spring Semester)

ECTS

ECTS

Elective Courses

20

20

Mandatory Internship

10

10

Term 3 (Summer Period) ECTS ECTS
Research Project* 15 -
Mandatory Internship - 15
Term 4 (Fall Semester) ECTS ECTS
Research Project 15 25
Mandatory Internship - 5
Term 5 (Spring Semester)    
Research Project   15
*The Research Project can start earlier following a discussion and the approval of the Supervisor.

Back to top

 

Program Courses

Mandatory Courses ECTS
SDS 405 Computational Modelling and Algorithms 5
SDS 406 Introduction to High Performance Computing 10
SDS 407 Fundamentals of Data Science 5
SDS 408 Machine Learning 10
Elective Courses
SDS 421 Numerical Linea Algebra for High-Performance Computers 5
SDS 422 Deep Learning 5
SDS 423 Modelling and Simulation for Scientific Applications 5
SDS 424 Network Science 5
SDS 425 Digital Innovation for Sustainable Development 5
SDS 426 / ES 416 Atmospheric Modelling 10
SDS 427 High Performance Computing in Machine Learning 5

Students who continue on to a PhD at The Cyprus Institute may have certain course requirements waived.
The Cyprus Institute Graduate School reserves the right to make any changes to the program upon approval of the Ministry of Education, Culture, Sport and Youth.

Back to top

 

Academic Calendar

Go to Academic Calendars

 

 

Back to top

Publications & Media